

DIGITAL TECHNOLOGY IN EDUCATION

Azimova Shokhista Salokhiddinova

Tashkent University of Information Technology
named after Muhammal al-Khwarizmi

Annotation.

This article gives you a brief overview on effective ways to use digital learning technology.

Keywords:

However, digital, education, understudy, instruction, network , conformance, video, projects.

Instruction has been acknowledged as a venture for social and political change, with the advancement of every individual for her monetary increases, yet additionally for building an equitable and empathetic society. It additionally needs to advance mindfulness and fabricate organization for maintainable turn of events and agreeable conjunction.

However, we are far from general quality training in the greater part of the world. While training is perceived as a public decent, governments cannot as well as reluctant to unveil required interests in schooling, as far as guaranteeing all-inclusive access and quality (Brush et al, 2008). Per understudy, consumption on instruction is low, far beneath what created nations spend, to fabricate all-inclusive state funded schooling frameworks. Private use on schooling has been expanding as a reaction to this deficit. Anyway expanding private use, where people reserve their youngsters' schooling, is prompting expanded delineation of the training framework, as instruction gains the idea of a 'market great'. The rich can bear the cost of costly great quality tuition based schools while the minimized areas enlist their youngsters in supposed 'moderate schools', which are too sick resourced to be fit for giving important training (Frederick et al., 2006).

The helpless interest in instruction likewise brings about low quality of instructor training, and insufficient scholarly foundation. Educators cannot and additionally reluctant to offer help to the learning measures. In this specific situation, advanced advances (Information and Communication Technologies, or ICT in short), are now and then seen as an answer that can address curricular asset lack, educator short-age and instructor quality (Doering et al., 2003). Projects that create e-content and give it on scale to educators may expect to reduce or take care of the issue of value showing learning materials. Video accounts of instructing or on-line learning stages are viewed as lessening the requirement for educating and instructors in schools. Utilized as such, ICT can de-ability instruction, making it less fortunate. Moreover, ICT programs in training can wind up hurting the objectives of instruction, through the two cycles of 'privatization' and 'centralization'.

As in other financial circles, in instruction as well, IT organizations are huge parts in the ICT and schooling space. They give 'ICT based training administrations' to schools through e-substance and ICT workforce. As their advanced substance can be effortlessly duplicated across schools, it is viewed as an answer for the enormous scope content requirements of the state funded instruction framework (Castro Sánchez et al., 2011).

Nonetheless, this interaction for the most part brings about the instructor staying a 'purchaser' of substance made somewhere else, with this 'e-content' joining the course reading which is created for all schools by the state training offices. It likewise prompts privatization of the

school educational program. While course books and other state government made materials need to follow public and state curricular systems and acknowledged instructive standards, such conformance is not expressly expected or found on account of e-content, whose quality is frequently suspect (Palak et al., 2009). Expanding the part of a privatized educational plan, without protections to guarantee arrangement to instructive points undermines the bigger transformatory objectives of schooling talked about before, as private merchants typically limit their e-substance to limit scholarly regions.

Also, the arrangement of such e-content is moving to the 'cloud', where schools need to interface with the phases made by the organizations to get to assets. While the cloud mitigates the prerequisite of dynamic substance, it can prompt centralization and 'one-size-fits-all' method of substance conveyance (Chen, C. H., 2008). Such brought together and privatized methods of ICT execution in a substance conveyance mode is appealing to both schooling officials (who regularly have a profound doubt of the educator) and to organizations. Nevertheless, they disengage the instructor and decrease opportunities for logical learning. The instructors' job is limited to that of being a 'client' or 'customer'. The prospects of investigating learning pathways and tending to assorted adapting needs of various understudies become obliged by the speculation behind the pre-bundled content.

Notwithstanding, ICT in instruction can be envisioned in significantly more engaging manners. ICT can reinforce educator proficient advancement by empowering the instructor to get to different in-arrangement archives, and settle on decisions of what to utilize and adjust. Educators can likewise interface with each other through computerized networks for peer learning and sharing (Gee, J. P. 2011). Computerized networks are the significant explanation behind the rise of 'Networks of Practice' as an amazing asset for educator proficient development. Bigger gatherings of 'proficient learning networks' across more extensive geologies can likewise fill in as discussions for sharing assets, encounters and thoughts.

All the more significantly, instructors to make their own learning assets can utilize computerized applications. Chai et al., (2010) advocated the possibility of 'constructionism' in which students can utilize computerized instruments to 'make, learn' and 'learn and make', which is a temperate pattern of unreservedly investigating advanced applications to create learning materials and through this interaction learn, both about the utilization of the computerized apparatuses, and the cycles of material turn of events. The cycle of material making likewise reinforces the office of the educator and builds up her innovative limits. It empowers her to imagine assets that are proper for the particular and different necessities of her student partners.

The way toward making advanced learning materials by instructors has another conceivably gainful result – the improvement of open instructive assets on scale. On the off chance that educators' abilities to utilize advanced applications to make computerized materials is created for a huge scope, and instructors with each other share these assets. Moreover, distributed on stages/vaults for others to utilize/adjust, utilizing copyright that empowers such sharing, it would be an amazing technique for establishing asset rich learning conditions (Lin et al., 2012). Concerning non-English learning conditions, a particularly model would be much more valuable, as curricular asset accessibility in many dialects in the agricultural nations is a small portion of what is accessible in English.

To guarantee that ICTs are utilized to engage instructors and schools, it is fundamental to embrace free and open advancements. Exclusive advancements are antagonistic to educator strengthening because of various reasons:

1. They contract instructors' office openly impart to students and friends
2. As the source code is closed, they cannot be effortlessly upgrade to meet instructor/student prerequisites

3. In settings that are asset starved, the need to separately permit restrictive advancements makes them restrictively costly for huge scope appropriation/variation (Brush et al, 2008).

The utilization of free and open source programming, open instructive assets and open equipment is key to building a solid and autonomous culture of ICT mix in the educational system.

Computerized advancements have seen fast changes in a brief period, and the most recent is 'man-made reasoning' - the utilization of enormous information and ICT to create prescient models (Castro Sánchez et al., 2011). In instruction, it asserted that digital technology could address the different adapting needs of students by:

1. instructing through customized schooling where custom substance, instructional method and appraisal can be determined for every understudy dependent on her/his reactions to past exercises and evaluations

2. self-learning through versatile practice

3. full scale diagnostics and prescient models, across gatherings of students (by topography, segment profile, grade, mechanism of guidance, subject and different classifications) to give contributions to strategy and program.

Computer based intelligence can be helpful in the event that it is utilized to give instructors a scope of substance and instructional method prospects, in view of investigations of learning settings. In any case, the peril that can and will be utilized to additional expertise and diminish the part of educator is very clear. In addition, this 'huge information' is being gathered by organizations in a 'locater is proprietor' worldview; this can possibly make the educators and understudies helpless against business abuse and political observation (Lin et al., 2012).

All the more significantly maybe, from training viewpoint, the transformatory capability of instruction requires moving past the past towards the regularizing, while the essence of ICT is to foresee the future dependent on past patterns. This propensity to project the past has just soiled ICT in discussions of inclination and hurt, and if unchecked, this will be significantly more perilous in schooling, as it will keep an eye on re-make existing financial authorities and force differences.

References

1. Brush, T., Glazewski, K. D. and Hew, K. F., 2008, Development of an instrument to measure preservice teachers' technology skills, technology beliefs, and technology barriers, *Computers in the Schools*, vol. 25, pp. 112-125.
2. Castro Sánchez, J. J. and Alemán, E. C., 2011, Teachers' opinion survey on the use of ICT tools to support attendance-based teaching. *Journal Computers and Education*, vol. 56, pp. 911-915.
3. Chai, C. S., Koh, J. H. L. and Tsai, C. C., 2010, Facilitating preservice teachers' development of technological, pedagogical, and content knowledge (TPACK), *Educational Technology and Society*, vol. 13, pp. 63-73.
4. Chen, C. H., 2008. Why do teachers not practice what they believe regarding technology integration?, *Journal of Educational Research*, vol. 102, pp. 65-75.
5. Doering, A., Hughes, J. and Huffman, D., 2003, Preservice teachers: Are we thinking with technology?, *Journal of Research on Technology in Education*, vol. 35, pp. 342-361.
6. Frederick, G. R., Schweizer, H. and Lowe, R., 2006. After the inservice course: Challenges of technology integration, *Computers in the Schools*, vol. 23, pp. 73-84.
7. Gee, J. P. 2011, *Language and learning in the digital age*, New York, Routledge.
8. Lin, M. C., Wang, P. Y. and Lin, I. C., 2012. Pedagogy technology: A two-dimensional model for teachers' ICT integration, *British Journal of Educational Technology*, vol. 43, pp. 97-108.
9. Palak, D. and Walls, R. T. 2009. Teachers' beliefs and technology practices: A mixed-methods approach, *Journal of Research on Technology in Education*, vol. 41, pp. 157-181. Ushbu maqolada traqamli ta'lim texnologiyasidan foydalanishning samarali usullari haqida batafsil bayon etilgan.